

PPA compound, 50% glass fiber reinforced, heat stabilized.

Intended for engineering applications that require a maximum service temperature higher than that of normal aliphatic polyamides. In addition to the outstanding thermal and chemical resistance, it provides high and constant mechanical performance, unaltered even after moisture absorption. Excellent creep behavior and dimensional stability. Suitable for drinking water applications.

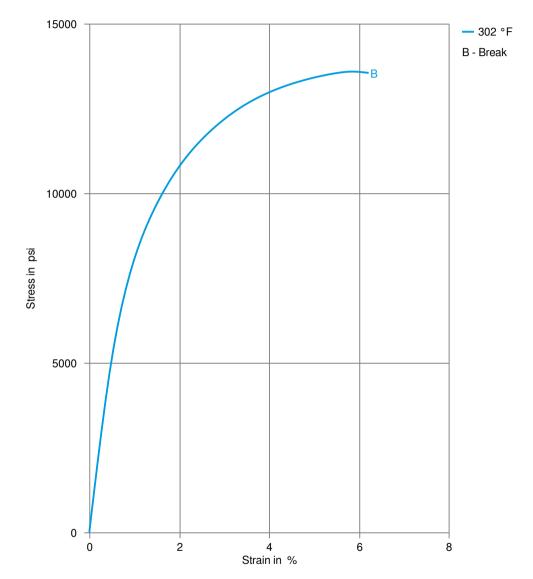
Product information			
Part Marking Code	>PPA-GF50<		ISO 11469
Rheological properties			
Moulding shrinkage range, parallel	0.1 - 0.3		ISO 294-4, 2577
Moulding shrinkage range, normal	0.3 - 0.5	%	ISO 294-4, 2577
Typical mechanical properties	dry/cond.		
Tensile Modulus	2.68E6/2.68E6	psi	ISO 527-1/-2
Stress at break, 5mm/min	37700/36300	psi	ISO 527-1/-2
Strain at break, 5mm/min	1.95/2	%.	ISO 527-1/-2
Flexural Modulus	2.61E6/2.61E6 58000/53700	•	ISO 178 ISO 178
Flexural Strength Charpy impact strength, 23°C	38.1/52.3	psi ftlb/in²	ISO 178 ISO 179/1eU
Charpy impact strength, -30°C	38.1/42.8	ftlb/in ²	ISO 179/1eU
Charpy notched impact strength, 23°C	4.52/5.95	ftlb/in ²	ISO 179/1eA
Charpy notched impact strength, -30°C	4.04/7.14	ftlb/in ²	ISO 179/1eA
Izod notched impact strength, 23°C	5.23/-	ftlb/in ²	ISO 180/1A
Thermal properties			
Melting temperature, 10°C/min	612	°F	ISO 11357-1/-3
Temp. of deflection under load, 1.8 MPa	536	°F	ISO 75-1/-2
Flammability			
Thickness tested	0.1	in	UL 94
Burning Behav. at thickness h		class	UL 94
Thickness tested	0.126	in	UL 94
UL recognition	yes		UL 94
Electrical properties	dry/cond.		
Volume resistivity	1E13/-	Ohm.m	IEC 62631-3-1
Electric strength	559/-	kV/in	IEC 60243-1

Other properties

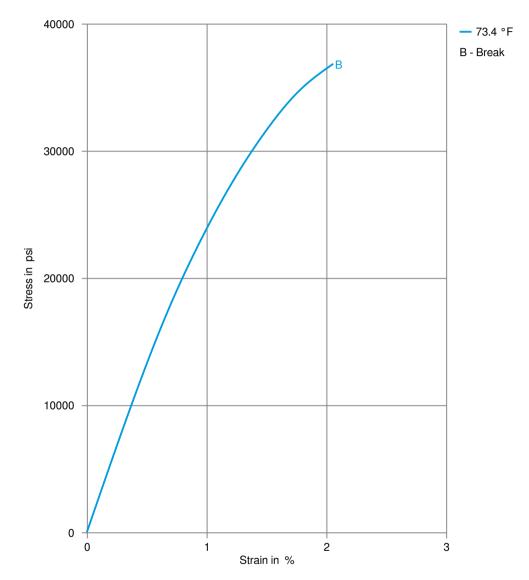
Humidity absorption, 2mm Water absorption, 2mm Density

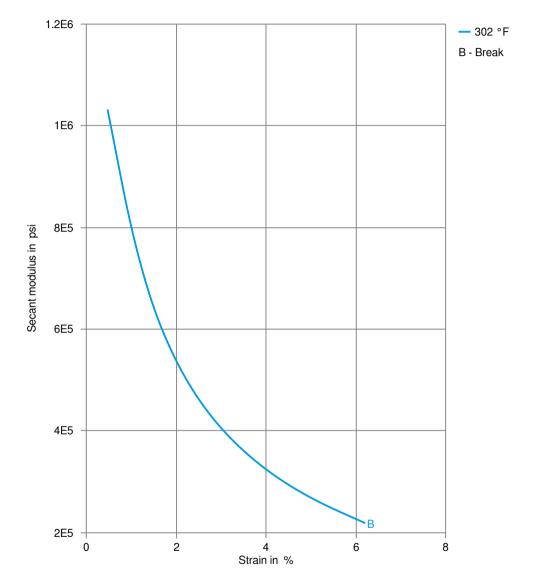
Additional information

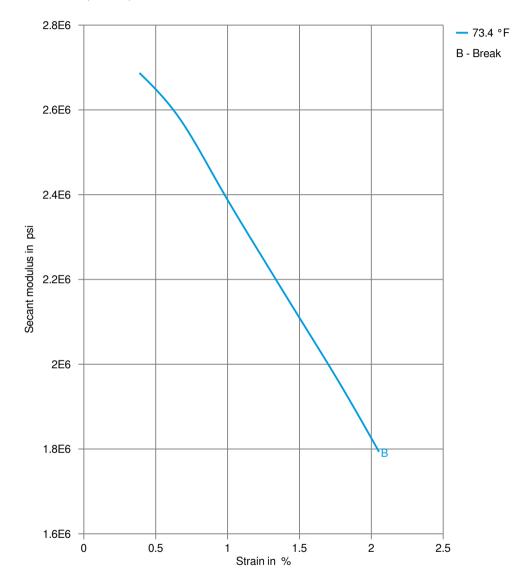
Injection molding


1 % 2.9 % 14 lb/gal Sim. to ISO 62 Sim. to ISO 62 ISO 1183

The following conditions apply to the normal injection molding process of XT1 compounds. Machine temperatures: barrel 310-325°C, nozzle and hot runners 325-340°C. Mold temperatures: > 135°C. Back pressure: typically 5 bar (hydraulic pressure). Temperatures exceeding 340°C and long residence time could lead to degradation and brittleness of the material. In case of gas generation in the melt, please verify moisture content and processing temperatures. Usage of regrind is possible depending on the molded part characteristics. For further details, please contact our technical support team.


Stress-strain (dry)


Stress-strain (cond.)


Secant modulus-strain (dry)

Secant modulus-strain (cond.)

Processing Texts	
Injection molding	The following conditions apply to the normal injection molding process of XT1 compounds. Machine temperatures: barrel 310-325°C, nozzle and hot runners 325-340°C. Mold temperatures: > 135°C. Back pressure: typically 5 bar (hydraulic pressure). Temperatures exceeding 340°C and long residence time could lead to degradation and brittleness of the material. In case of gas generation in the melt, please verify moisture content and processing temperatures. Usage of regrind is possible depending on the molded part characteristics. For further details, please contact our technical support team.
Injection molding Preprocessing	The XT1 compound is supplied in a moisture-proof package. The maximum humidity content allowed for the injection molding process is 0.10%, but in order to obtain the best performance and avoid possible degradation phenomena we recommend molding with a moisture content < 0.08%. The drying time depends on the initial moisture content and the drying conditions used. Generally 4-6 hours at 120°C with dry air (dew point of about -30°C) are sufficient to prepare a granule stored in unopened packages or with a moisture content of < 0.20-0.25%.
Injection molding Postprocessing	Parts made by XT1, do not change significantly their performance depending on the moisture uptake. Normally, a conditioning cycle is not necessary. After molding, with favorable environmental conditions, a piece can absorb moisture up to 0,2% in 24h and reach the equilibrium during its lifetime. The post-treatment of the parts may include annealing at 150-160°C in the oven, for two to four hours depending on the temperature. This treatment is useful to relax any internal stress and maximize thermomechanical performance.